ARTIFICIAL INTELLIGENCE UNDER THE HOOD

$$\frac{\partial^{2} f}{\partial \theta^{2}} = -r \cos(\theta) \frac{\partial f}{\partial x} - r \sin(\theta) \left(-r \sin(\theta) \frac{\partial^{2} f}{\partial x^{2}} + r \cos(\theta) \frac{\partial^{2} f}{\partial y \partial x} \right) - r \sin(\theta) \frac{\partial f}{\partial y} + r \cos(\theta) \left(-r \sin(\theta) \frac{\partial^{2} f}{\partial x \partial y} + r \cos(\theta) \frac{\partial^{2} f}{\partial y^{2}} \right)$$

$$= -r \cos(\theta) \frac{\partial f}{\partial x} + r^{2} \sin^{2}(\theta) \frac{\partial^{2} f}{\partial x^{2}} - r^{2} \sin(\theta) \cos(\theta) \frac{\partial^{2} f}{\partial y \partial x} - r \sin(\theta) \frac{\partial f}{\partial y} - r^{2} \sin(\theta) \cos(\theta) \frac{\partial^{2} f}{\partial x \partial y} + r^{2} \cos^{2}(\theta) \frac{\partial^{2} f}{\partial y^{2}}$$

$$= -r \cos(\theta) \frac{\partial f}{\partial x} - r \sin(\theta) \frac{\partial f}{\partial y} + r^{2} \sin^{2}(\theta) \frac{\partial^{2} f}{\partial x^{2}} - r \cos(\theta) \frac{\partial^{2} f}{\partial y^{2}} - r \sin(\theta) \cos(\theta) \frac{\partial^{2} f}{\partial y^{2}} - r \sin(\theta) \cos(\theta) \frac{\partial^{2} f}{\partial y^{2}} + r^{2} \cos^{2}(\theta) \frac{\partial^{2} f}{\partial y^{2}} - r \sin(\theta) \cos(\theta) \frac{\partial^{2} f}{\partial y^{2}} - r \cos(\theta) \frac{\partial^{2} f}{\partial y^{2}} - r \sin(\theta) \cos(\theta) \frac{\partial^{2} f}{\partial y^{2}} - r \cos^{2}(\theta) \frac{\partial^{2} f}{\partial y^{2}} - r \cos^{2}$$

SCARED OF AI

FACTORY WORKER

CHEF

DRIVER

FINANCE

LAWYER

Caffe

theano

MICROWAVE COOKING OF AI

PRO

- Anybody Can Do It
- Turnkey Toolkits
- Free or Cheap Courses
- Runs on Laptop

CON

- Amateur = Dangerous
- Hard Problems
- Domain Expertise
- Sophistication

SOLVE ANY PROBLEM IN 4 STEPS

- 1. Define Goal
- 2. Data
- 3. Model (Less Wrong)
- 4. Decision / Presentation

2			4	5	2.94
5		4			1
		5		2	2.48
	1		5		4
		4			2
4	5		1		1.12

REGRESSION

CLASSIFICATION

MISSING DATA ?

LESS WRONG

DEEP LEARNING

KNOWLEDGE GROWTH

SELF DRIVING CAR

Objective = Minimize drive time Conditions =

- Don't break laws
- Minimize Injury Risk

- 1. Camera Pixels >>> Deep learning >>> Stop Sign
- 2. Decision Tree >>> Stop required for legal condition
- 3. Breaking Amount >>> Minimize injury
- 4. Waiting Time >>> Drive Time + Injury Risk

WORLD DOMINATION FOR \$4500

EXAMPLES

- Chemical Liability Risk
- Product Recommendation
- Self Driving
- Hedge Funds & Twitter
- Predictive Policing
- Real Estate Valuation and Brokerage

THANK YOU

Noah Silverman, PhD

noah@datascience.io